Vectors

Methods described in this section relate to the vectors API. These methods can be accessed at TenableAPA.vectors.

class VectorsAPI(api: APISession)[source]
list(page_number: int | None = None, limit: int = 10, filter: dict | None = None, sort_field: str | None = None, sort_order: str | None = None, run_ai_summarization: bool | None = None, return_iterator=True) VectorIterator | VectorsPageSchema[source]

Retrieve vectors

Args:
page_number (optional, int):

For offset-based pagination, the requested page to retrieve. If this parameter is omitted, Tenable uses the default value of 1.

limit (optional, int):

The number of records to retrieve. If this parameter is omitted, Tenable uses the default value of 25. The maximum number of events that can be retrieved is 25. For example: limit=25.

filter (optional, dict):

A document as defined by Tenable APA online documentation. Filters to allow the user to get to a specific subset of Findings. For a more detailed listing of what filters are available, please refer to the API documentation linked above, however some examples are as such:

  • {"operator":"==", "key":"name", "value":"nice name"}

  • {"operator":">", "key":"critical_asset", "value": 10}

sort_field (optional, str):

The field you want to use to sort the results by. Accepted values are name, priority

run_ai_summarization (optional, bool):

Indicates whether or not to run the AI summarization for missing paths. Note that enabling the AI summarization results in slower response times. Tenable uses the default value of false.

return_iterator (optional, bool):

Should we return the response instead of iterable?

Returns:

List of vectors records

Return type:

VectorsIterator

Examples:
>>> vectors = tapa.vectors.list()
>>> for f in vectors:
...     pprint(f)
Examples:
>>> tapa.vectors.list(
...     limit='10',
...     sort_field='name',
...     sort_order='desc',
...     filter={"operator":"==", "key":"name", "value":"nice name"},
...     return_iterator=False
...     )